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Abstract

Conventional representations of 3D shapes such as point clouds, meshes, and voxel are limited by
their discrete nature and associated drawbacks. However, there has been a growing interest among
researchers in the utilization of implicit neural representations(INRs) as an alternative approach.
This summary aims to provide a comprehensive overview of the general definition of INRs and
highlights various influential neural network architectures that have been applied in the field of
computer graphics.

1 3D Shape Representation

1.1 Traditional Representations

Traditional 3D shape representations mainly include point clouds, meshes, and voxel. Point cloud
representation utilizes a collection of points in 3D space to depict the shape of an object (Figure
1(a)). Although it is lightweight, it lacks topological connectivity due to its discrete nature. Mesh
representation, on the other hand, involves approximating the surface of an object using segmented
triangular patches (Figure 1(b)). Two commonly employed methods are utilized for this purpose. The
first method involves predefining a template grid[1] and mapping it to the object shape that needs to be
represented. The second method employs parameterization algorithms[2, 3] to transform the 2D plane
shape into a 3D object. However, a major drawback of these transformations is that the resulting mesh
representation remains topologically invariant. In other words, for objects with different topological
structures, specific template grids or 2D plane shapes with corresponding topological structures must
be designed. Voxel representation, on the other hand, employs regular rectangular cuboid blocks of the
same size to represent objects (Figure 1(c)). This can be seen as an extension of 2D image pixel blocks.
However, voxel representation has a significant disadvantage in that the memory occupied increases
exponentially with the voxel resolution. Consequently, it is only suitable for low-resolution shape
representation. Table 1 provides a summary of the drawbacks associated with these three common
shape representations.

(a) point (b) mesh (c) voxel

Figure 1: Traditional 3D shape representations.
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Shape Representations Disadvantages
Point Lack of topological connectivity
Mesh Difficulty in representing complex topological structures
voxel Large memory usage and time consumption

Table 1: The main disadvantages of three traditional shape representations.

1.2 Implicit Representations

Traditional shape representations are discretized rather than being represented continuously. How-
ever, the real world exists in a continuous manner, and therefore, implicit representation is employed
as a continuous representation. Implicit representation commonly used for closed surfaces include the
signed distance field SDF and the occupancy function. The SDF represents the directed distance from
a point in space to the surface of the object, with its zero isosurface corresponding to the object sur-
face. On the other hand, the occupancy function defines the decision boundary of the object surface.
Throughout the subsequent discussion, it is important to note that the closed surface is denoted as
S. The signed distance field, denoted as f : R3 → R, expresses the directed distance from a point in
3D space to the surface S. The sign of f depends on whether the point is located inside or outside S,
allowing S to be implicitly represented in the following form:

S = {x : f(x) = 0}

In fact, SDF is still the solution to the Eikonal equation. Assuming that S is derived from the surface
point cloud χ and the corresponding normal vector N is determined, then the solution of following
equation

∥∇f∥ = 1{
f |χ = 0
∇f |χ = N

is the signed distance field of S. Some work of neural implicit representations is to construct loss
function on this basis, which will be mentioned later.

In addition to SDF, the occupancy function g : R3 → {0, 1} is also a commonly used implicit
function, which is defined as

g(x) =

{
0, x outside S
1, x inside S

In the context of deep learning, g is is characterized by its continuity, that is, the function g takes on
values within the entire continuous interval [0, 1]. Consequently, the set S can be determined by the
decision boundary τ , which lies within the range of [0, 1].

S = {x : g(x) = τ}

It is worth noting that different values of τ correspond to varying thicknesses of S. To visualize the
surface represented by its implicit form, the commonly employed algorithm is Marching cubes[4].

1.3 Implicit Neural Representations

With the remarkable advancements of deep learning in various domains, there has been a grow-
ing interest in utilizing deep learning techniques for the representation of 3D shapes. Notably, sev-
eral approaches have been developed, including the point cloud based neural network architecture
PointNet[5], the grid based neural network architecture Surfnet[6], as well as deep learning methods
employed in voxel representation[7, 8], and other deep learning techniques applied to traditional shape
representation[9, 10, 11, 12]. These approaches primarily involve discrete representations. However,
in recent years, researchers have also explored the application of deep learning to implicit expression,
resulting in the development of implicit neural representations (INRs). The second chapter of this
paper will provide a specific introduction to INRs.
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2 Construction Methods

The initial research on INRs was introduced in a series of three papers in 2019[13, 14, 15], which
sparked a significant surge of interest in the field. The fundamental concept behind INRs involves
training an implicit expression, denoted as f , through the utilization of neural networks fθ : R3 → R.
These neural networks can take the form of signed distance fields SDF or occupancy functions, where
the input corresponds to the point coordinates and the output represents the SDF value or Occupancy
value of the given point. Here, θ represents the parameters of the neural network. Consequently, the
development of INRs is closely tied to the broader problem of constructing neural networks, determining
appropriate training methods, and defining an appropriate loss function.

2.1 Three Classic INRs

This section briefly introduces the basic methods of the three classic works in 2019.

2.1.1 IM-Net

The pioneering work of IM-Net[13]introduced the utilization of neural networks for the construc-
tion of implicit representation. The fundamental concept behind this approach involves the imple-
mentation of a ”encoder-decoder” neural network architecture to facilitate the training of internal
parameters. The objective is to minimize the loss function, which represents the sum of the discrep-
ancies between the output occupancy value and the actual value on the observation data set.
Input: Points, Mesh, Voxel(Images)
Output: Occupancy value
Loss(Mean Squared Error):

L(θ) =

∑
p∈S wp ∥fθ(p)− F (p)∥2∑

p∈S wp

where fθ represents the neural networks, θ is the parameters, S is the training set, p is the 3D point
in the training set, F (p) is the true Occupancy value of the given point p, wP is the density at p.
Architecture:

Figure 2: Decoder in IM-Net.

Main ideas: The IM-Net utilizes an encoder-decoder architecture, employing different architectures
depending on the input. The author did not create a new encoder, but rather utilized existing en-
coders. The primary role of the encoder is to learn shape features, such as sharp corners and topology.
In this case, the encoder produces 128-dimensional feature vectors. These feature vectors are then
concatenated with point coordinates to form a 131-dimensional vector, which serves as the input for
the decoder. Figure 2 illustrates the author’s design for the decoder, which generates a 1-dimensional
Occupancy value as output. The true Occupancy value for each point is present in the training set,
allowing for continuous updating of the network parameters through the defined loss function to obtain
the final IM-Net.

2.1.2 OccNet

OccNet[14], similar to IM-Net, also employs an Occupancy function and utilizes an encoder-
decoder architecture. Nevertheless, there are distinctions between the two approaches in terms of their
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decoder design and the formulation of the loss function.
Input: Points, Images, Voxel
Output: Occupancy value
Loss(Cross Entropy):

L(θ) =
∑
p∈S

−[F (p)log(fθ(p)) + (1− F (p))log(1− fθ(p))]

where fθ represents the neural networks, θ is the parameters, S is the training set, p is the 3D point
in the training set, F (p) is the true occupancy value of point p, wP is the density at p.
Architecture:

Figure 3: OccNet Architecture.

Multiresolution IsoSurface Extraction:After the completion of the training, an implicit expression
was derived, which yielded the Occupancy value as the output. In addition to employing the conven-
tional Marching cubes algorithm for surface extraction, the author introduced a novel approach, namely
MISE, for extracting implicit surfaces, as depicted in Figure 4. The algorithm entails the following
steps: (1) Calculation of the Occupancy value at each node; (2) Examination of each voxel, and if it
contains points with both an Occupancy value of 1 and an Occupancy value of 0, the voxel is marked
in red and subdivided into multiple child voxels; (3) Repetition of the aforementioned steps until the
termination conditions are satisfied; (4) Extraction of grids using the Marching cubes algorithm; (5)
Subdivision of the mesh based on gradient information.

Figure 4: MISE algorithm for extracting implicit surfaces.

2.1.3 DeepSDF

Unlike IM-Net and OccNet, DeepSDF[15] learns the SDF values of surfaces and adopts its own
pioneering Auto-decoder neural network architecture.
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Input: Points, Mesh, Voxel(Images)
Output: SDF value
Loss:

L(θ) =
∑
p∈S

(
g(fθ(z, p), F (p)) +

1

σ2
∥z∥2

)
where fθ is the neural networks, θ is the parameters, S is the training set, p is the 3D point in the
training set, F (p) is the true SDF value of point p. The latent code of the input shape is denoted as
z, which is a vector of specific length and can be considered as a parameter that requires updating in
the neural network. It is important to note that each input shape has its own late code. The function
g(·, ·) measures the error between the output SDF value fθ(z, p) and the true F (p) values:

g(fθ(z, p), F (p)) = |clamp(fθ(z, p), δ)− clamp(F (p), δ)|
clamp(x, δ) = min {δ,max {−δ, x}}

Architecture:

Figure 5: Auto-decoder.

Main ideas: The encoder component of the neural network architecture is eliminated by the author,
leaving only the decoder. The decoder takes as input the latent code and point coordinates of the shape.
During the training period, both the latent code and network parameters are updated simultaneously.
However, in the testing phase, the parameters θ are fixed. To generate a new shape, the latent code is
optimized based on the according loss function.

2.2 Unsupervised Learning INRs

This section provides an introduction to the training of INRs without relying on the actual Surface
Distance Function SDF value or Occupancy value of the training dataset. Two notable works in this
area are SAL[16] and IGR[17]. These works specifically focus on point cloud input and the the loss
function. S ⊂ R3 represents the point cloud, fθ denotes the neural network, and θ represents the
network parameters. Additionally, it should be emphasized that the point cloud S is sampled on the
surface rather than in the entire space.
SAL: The loss function is defined as

L(θ) = Ex(τ(fθ(p), hS(x)))

where hS(x) denotes the distance from x to S, and τ : R × R+ → R is a similarity function which
satisfies the following two conditions:
(1) τ(−a, b) = τ(a, b),∀a ∈ R,∀b ∈ R+

(2) ∂τ
∂a (a, b) = ρ(a, b), ρ is a increasing function and ρ(0) = 0
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It can be found that the loss function employed by SAL does not require the computation of
the actual SDF value or occupancy value of the training data set points. Instead, it directly utilizes
the coordinate information of the original input points to train an implicit function, which is a neural
network model that operates in an ”end-to-end” manner. The metric function hS is utilized to quantify
the distance between a point and the input S. The author highlights that when hS is chosen as the L0

norm, the trained outcome corresponds to the occupancy value, whereas selecting hS as the L2 norm
yields the SDF value as the trained result. The function τ introduces two constraints to capture the
similarity between the output value and the true value.
IGR: The construction of IGR loss function comes from Eikonal equation. As mentioned above, SDF
is actually the solution of Eikonal equation, so solving SDF according to input is equivalent to solving
Eikonal equation. The author defines Loss function as

L(θ) = LS(θ) + λEx(∥∇xfθ(x)∥ − 1)2

where

LS(θ) =
1

|S|
∑
p∈S

(|fθ(p)|+ τ ∥∇xfθ(p)− np∥)

The term LS(θ) is designed to ensure that the output of points on the surface is as close as possible to
0 (because their SDF value is 0), and the gradient is as close as possible to the true normal vector np
is equal, Except for LS(θ), the other is to ensure that the modulus of the gradient vector is as long as
possible as 1, λ is the trade-off coefficient. The construction of this Loss function is actually derived
from Eikonal equation. Unlike SAL, IGR also needs to know the normal vector information of the
training data.

2.3 Neural Scene Representations

The initial sections of this study focus on constructing INRs for individual objects or shapes.
However, real-world scenes are often more complex, consisting of multiple objects with varying shapes,
sizes, and spatial distributions. To address this complexity, previous research has explored methods
for constructing INRs in such scenes[18, 19, 20, 21]. For single objects, the later code is typically
represented as a simple vector[21]. In large-scale scenes, local neural implicit expressions are commonly
used as INRs. These expressions divide an object into multiple overlapping parts, with each part
corresponding to a later code. When calculating the SDF value at a specific point, the late codes
of the subparts containing the point are separately computed, and the output of the neural network
is weighted averaged. This local expression is well-suited for large-scale scenarios.To illustrate the
concept of local neural implicit expressions, we will briefly discuss the approach presented in [20].
Figure 6 depicts a 2D image with a 3 ∗ 3 coordinate grid. The image is divided into four overlapping
subregions, each measuring 2 ∗ 2. During training, each subregion is trained separately, resulting in
the acquisition of a late code ci for each subregion. During testing, for a given point x in the original
image, the set of subregions containing point x is denoted as Nx. The final output corresponding to
point x is determined by taking the weighted average of the late codes from the subregions in Nx:

f(x) =
∑
i∈Nx

wifθ(ci, xi)

where xi is the local coordinate of x in the region i.

2.4 Texture Reconstruction

The above are all implicit expressions of object shape. In fact, implicit expressions can also be
used for texture expression of objects[22, 23, 24], such as color rgb. That is, learning the rgb values at
each point:

fθ : R3 → R3

The input of fθ is the coordinates of a point in 3D space, and the output is the rgb value of that
point. Similar to the shape representation introduced earlier, a neural network architecture can also
be constructed to optimize parameters on the training set, obtaining an implicit expression of the final
predicted rgb value.
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Figure 6: Local Implicit Neural Representations.

For example, the typical job of PIFU[23] is to reconstruct the human body with clothing. In
addition to reconstructing the surface of the human body, it is also necessary to reconstruct the color
information of each point. Firstly, the human surface is reconstructed, and then the rgb value is
reconstructed, as shown in Figure 7. The upper encoder learns the late code of the object shape, while
the lower encoder learns the late code of the object color. Finally, the two are combined to obtain the
final reconstruction. In addition, LIIF[24] mainly focuses on the reconstruction of 2D color images in
the real world, as shown in Figure 8. It implicitly expresses the image using multiple local nerves, but
unlike before, the implicit expression here is the rgb value.

Figure 7: schematic diagram of PIFU.

Figure 8: Reconstruction of 2D real images by LIIF.

2.5 Open surface

It has been observed that both SDF and Occupancy representations necessitate the input surface
to be a closed surface. However, there have been some studies exploring the implicit representation of
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non-closed surfaces[25, 26, 27]. In particular, [25] proposed a Neural Distance Field NDF network that
can learn unsigned distance fields without the requirement of the surface being closed. On the other
hand, [27] expresses the boundary of the surface explicitly while representing the interior implicitly.
By employing geometric measure theory and stochastic gradient optimization methods, the minimum
surface problem can be solved, leading to the final implicit expression of the surface with a boundary.

2.6 Learning high-frequency details

In machine learning, Multilayer Perceptron (MLP) models often exhibit a tendency to learn
smooth outcomes, which poses challenges in capturing high-frequency details. To address this is-
sue, two commonly employed approaches are available. The first approach involves embedding the
inputs into higher dimension space, while the second approach entails selecting alternative activation
functions.

2.6.1 Sin periodic activation function

Sitzmann[28] proposed sin periodic activation function, which can better represent details and
derivative information in the domain of images and videos. At the same time, this INRs can be used
to solve PDE equations, such as Eikonal equation, Poisson equation, etc.

fθ(x) =Wn(ϕn−1 ◦ ϕn−2 ◦ · · ·ϕ0)(x) + bn

ϕi(x) = sin(Wix+ bi)

ϕi is the fully connected layer of the i-th layer, wi is the weight, bi is the offset. The important factor of
sin periodic activation function neural network is the selection of initial parameters value. The author
gives a set of initial weight scheme through analysis. The quality of initial weight greatly affects the
effect of neural network.

2.6.2 Bspline positional encode

Matthew[29] used Fourier analysis to map low dimensional inputs to high dimensional ones, and
then achieved good results through MLP connection (this block is also available in Nerf[30]). Similarly,
Wang[31] uses the B-spline position coding method to map the input to high dimensions. Let

B0(x) =

{
1, |x| < 0.5
0, else

Then Bi(x) is the i-th convolution of B0(x), and it can be seen that the support of B1(x) is [−1, 1],
the support of B2(x) is [−1.5, 1.5], and so on. For a one-dimensional input, divide it equally into K
parts to obtain K + 1 nodes {ci}Ki=0, then Bδ,ci(x) = B

(
x−ci
δ

)
, where δ is the node spacing, then the

B-spline function can be defined as

ψ(x) =

K∑
i=0

WiBδ,ci(x)

In the input x ∈ Rd of the neural network, denote D1, D2, ..., DM is a set of linear independence unit
vector of Rd, and the projection of x ∈ Rd is recorded as xk = <x,DK>, then the B-spline position
code is defined as

Ψ(x) = (ψ1(x1), ψ2(x2), · · · , ψM (xM ))

3 Applications

INRs refer to a collection of works that employ neural networks to implicitly represent objects
or scenes. These techniques have found applications in various domains such as medical imaging, CT
scanning, and vascular reconstruction[32, 33, 34]. The underlying approach involves solving partial
differential equations using neural implicit representation[35, 36]. Additionally, 4D scene reconstruc-
tion, including the generation of human motion sequences, has been achieved[37, 38, 39]. Throughout
this period, my primary research focus has been on iterative reconstruction methods, including point
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cloud reconstruction, shape completion, shape interpolation, voxel super-resolution (which involves
generating high-resolution images from low-resolution inputs), as well as single view and multi-view
reconstruction. The majority of the references cited in Sections 1 and 2 also center around iterative
reconstruction techniques. The following figures serve as visual representations of the reconstruction
outcomes achieved through the use of INRs, as depicted in the literature.

Figure 9: Point Cloud Reconstruction-SAL.

Figure 10: Point Cloud Completion-DeepSDF.

Figure 11: Shape Interpolation-IMNet.
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Figure 12: Voxel SuperResolution-IFNet[40].

Figure 13: Single view and multi view reconstruction-PIFU.

References

[1] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European conference on
computer vision (ECCV), pages 52–67, 2018.

[2] Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri, and Yaron Lipman. Multi-chart
generative surface modeling. ACM Transactions on Graphics (TOG), 37(6):1–15, 2018.

[3] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A
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